## MARK SCHEME for the October/November 2008 question paper

## 5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



UNIVERSITY of CAMBRIDGE International Examinations

|            | Page 2 |                                                                                | 2                                                                                                 | Mark Scheme                                                                                                                                                                                                                                                                 | Syllabus                    | Paper            |
|------------|--------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|
|            |        |                                                                                |                                                                                                   | GCE O LEVEL – October/November 2008                                                                                                                                                                                                                                         | 5070                        | 02               |
|            |        |                                                                                |                                                                                                   | Section A                                                                                                                                                                                                                                                                   |                             |                  |
| <b>A</b> 1 | (a)    | (i)                                                                            | Ρ                                                                                                 |                                                                                                                                                                                                                                                                             |                             | [1]              |
|            |        | (ii)                                                                           | He                                                                                                |                                                                                                                                                                                                                                                                             |                             | [1]              |
|            |        | (iii)                                                                          | Cl                                                                                                |                                                                                                                                                                                                                                                                             |                             | [1]              |
|            |        | (iv)                                                                           | N/P/                                                                                              | As                                                                                                                                                                                                                                                                          |                             | [1]              |
|            |        | (v)                                                                            | Ni                                                                                                |                                                                                                                                                                                                                                                                             |                             | [1]              |
|            |        | (vi)                                                                           | S an<br>ALL                                                                                       | d O (both needed for 1 mark)<br>OW: N and O (1 mark)                                                                                                                                                                                                                        |                             | [1]              |
|            |        |                                                                                |                                                                                                   |                                                                                                                                                                                                                                                                             |                             | [Total: 6]       |
|            |        | ALI<br>dee<br>ALI<br>ALI<br>IGN<br>NO                                          | LOW:<br>per<br>blac<br>LOW:<br>white<br>LOW:<br>brigh<br>NORE<br>TE: g                            | carbon dioxide melts/carbon dioxide block decreases<br>k powder/black solid formed/black smuts/black fumes/<br>black gas/black smoke<br>e powder/white solid formed/white fumes<br>white gas<br>nt light/flame<br>: flame colour<br>reyish fumes/solid/powder/gas = 2 marks | in size/hole in bl<br>sooty | lock gets<br>[2] |
|            | (b)    | to s<br>NO                                                                     | stop M<br>T: to                                                                                   | Ig reacting with air (or oxygen)/to stop side reactions/to stop oxidation of magnesium/to increase rate of reactions                                                                                                                                                        | o stop air getting<br>on    | ı in [1]         |
|            | (c)    | <u>low</u><br>NO                                                               | temp<br>T: su                                                                                     | perature/the cold(ness)/it is cold/it is –60 °C<br>rface area/temperature                                                                                                                                                                                                   |                             | [1]              |
|            | (d)    | 2 ×<br>2 g<br>33.<br>OR<br>mo<br>810<br>cor<br>1 m<br>2 m<br>ALI<br>33.<br>67. | $24 g$ $\rightarrow 81$ $75 (k.$ les M $0 \times 0.0$ rect a harks $-0 \times 0.0$ T/34.0 $5 = 1$ | $\rightarrow 810 \text{ kJ}$ $0 \times 2/(2 \times 24) =$ J) $g = 2/24 = 0.083333$ $083333/2 = 33.75$ nswer without working scores 2 or use of moles i.e. 2/24 or 2 × 24 for correct answer 33.8/34 D/33.6 (from rounding up 0.083333) = 1 mark ONLY mark ONLY              |                             | [2]              |

|    | Page 3 |                                                                                        | 3 Mark Scheme Syllabus                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | Paper                                |  |
|----|--------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|--|
|    |        |                                                                                        |                                                                                  | GCE O LEVEL – October/November 2008                                                                                                                                                                                                                                                                                                                                                                                              | 5070                                      | 02                                   |  |
|    | (e)    | mag<br>•<br>OR 2<br>so 6<br>(or re                                                     | nesii<br>Mg 6<br>2 ma<br>(1 m<br>2 × 2<br>g ma<br>evers                          | um in excess (no marks on its own)<br>$5/24 = 0.25 \text{ mol } CO_2 4.4/44 = 0.1 \text{mol } (1 \text{ mark})$<br>bles Mg needed to 1 of CO <sub>2</sub> /recognition of this/division<br>hark)<br>4 g magnesium $\rightarrow 44$ g carbon dioxide (1 mark)<br>agnesium gives $6 \times 44/48 = 5.5$ g carbon dioxide (1 r<br>se argument for carbon dioxide to calculate mass of                                               | n by two or 2:1 ra<br>nark)<br>magnesium) | tio shown<br>[2]                     |  |
|    | (f)    | ener<br>bond<br>more<br>more                                                           | gy ta<br>d-bre<br>e ene<br>e ene                                                 | iken in to break bonds and energy given out in maki<br>aking is endothermic <b>and</b> bond-making exothermic<br>ergy released than absorbed<br>ergy released in bond-making than absorbed in bond                                                                                                                                                                                                                               | ng bonds/<br>-breaking ORA =              | [2]<br>2 marks<br><b>[Total: 10]</b> |  |
|    |        |                                                                                        |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                      |  |
| A3 | (a)    | meth<br>carb                                                                           | nane/<br>on di                                                                   | /CH <sub>4</sub><br>ioxide/CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                       |                                           | [2]                                  |  |
|    | (b)    | corre<br>ALL(<br>ALL                                                                   | ect st<br>OW:<br>hydr                                                            | rructure of butanoic acid<br>condensed structural formula or mixture of condens<br>ogen atoms must be shown.                                                                                                                                                                                                                                                                                                                     | ed and displayed                          | [1]<br>formulae                      |  |
|    | (c)    | (i) :                                                                                  | spee<br>ALLC<br>ALLC<br>ALLC<br>NOT                                              | ds up the reaction<br>DW: reduces time taken for the reaction (to complete<br>DW: reduces activation energy<br>DW: makes oil quicker<br>: changes/alters rate of reaction                                                                                                                                                                                                                                                        | •)                                        | [1]                                  |  |
|    |        | (::)                                                                                   | ~ 11                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                      |  |
|    |        | (II)                                                                                   | O <sub>22</sub> H                                                                | $_{22}O_2 + 26\gamma_2O_2 \rightarrow 22CO_2 + 11H_2O_2$                                                                                                                                                                                                                                                                                                                                                                         |                                           |                                      |  |
|    |        |                                                                                        | (1 for<br>REJI                                                                   | r correct reactants and products, 1 for balance)<br>ECT: if additional products/reactants                                                                                                                                                                                                                                                                                                                                        |                                           | [2]                                  |  |
|    |        |                                                                                        |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | [Total: 6]                           |  |
| Α4 | (a)    | pota<br>ALLC<br>one<br>pota<br>phos<br>phos<br>phos<br>oxida<br>oxida<br>ALLC<br>be ca | ssiur<br>OW:<br>of:<br>sphor<br>sphor<br>sphor<br>ation<br>ation<br>OW:<br>orrec | n chlorate is oxidant <b>and</b> P is reductant (1 mark)<br>oxygen/chlorine is oxidant and P is reductant<br>n chlorate loses oxygen/<br>rus removes oxygen from potassium chlorate/<br>rus gains oxygen/<br>n chlorate/chlorine/chlorate gains electrons/<br>rus loses electrons/<br>number of phosphorus increases<br>number of chlorine (ALLOW: of potassium chlorate)<br>increases/decreases in oxidation numbers in correct | decreases<br>direction (numbe             | rs need not<br>[2]                   |  |

|    | Page 4 |                       |                                       | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Syllabus                                                                 | Paper                                                  |
|----|--------|-----------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------|
|    |        |                       |                                       | GCE O LEVEL – October/November 2008                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5070                                                                     | 02                                                     |
|    | (b)    | (i)                   | P2O2<br>ALL<br>IGN                    | $_{5}$ + H <sub>2</sub> O $\rightarrow$ 2HPO <sub>3</sub><br>OW: multiples<br>ORE: state symbols                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | [1]                                                    |
|    |        | (ii)                  | effer<br>turns                        | rvescence/bubbling; NOT: carbon dioxide given off<br>s red/pink                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          | [2]                                                    |
|    | (c)    | Sb <sub>2</sub><br>NO | ₂S₃/S₃<br>T: Sb                       | Sb <sub>2</sub><br><sub>4</sub> S <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                          | [1]                                                    |
|    |        |                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          | [Total: 6]                                             |
| A5 | (a)    | (i)                   | (thei<br>NOT                          | rmal) decomposition<br>F: endothermic                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | [1]                                                    |
|    |        | (ii)                  | it is (<br>ALL)<br>wate<br>NOT<br>NOT | (a) basic (oxide)/it is a base/it is (an) alkaline oxide<br>OW: it is alkaline/an alkali (in solution)/has a high pH (v<br>er)/forms hydroxide ions (when reacts with water)<br>F: it contains hydroxide ions<br>F: answers about effect on plant growth                                                                                                                                                                                                                        | when it reacts wi                                                        | [1]<br>th                                              |
|    | (b)    | (i)                   | CaC<br>IGN                            | $0 + H_2O \rightarrow Ca(OH)_2$<br>ORE: state symbols                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | [1]                                                    |
|    |        | (ii)                  | any<br>•<br>•<br>•                    | three of:<br>pH increases inside beam ORA/<br>carbon dioxide (in solution) is slightly acidic/<br>on the surface CO <sub>2</sub> reacts with neutralises Ca(OH) <sub>2</sub> C<br>on the surface/<br>reaction of carbon dioxide with calcium hydroxide red<br>further inside (beam), less (or no) CO <sub>2</sub> /little or no reac<br>calcium hydroxide inside (beam)/<br>crack allows carbon dioxide to enter the inside of the<br>near crack alkalinity less/pH lower OWTTE | DR implication that<br>uces alkalinity (c<br>ction (of carbon c<br>beam/ | at pH neutral<br>r lowers pH)/<br>lioxide) with<br>[31 |

| Page 5 |     |                                 | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                             | Paper                                                    |                                        |
|--------|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|
|        |     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GCE O LEVEL – October/November 2008                                                                                                                                                                                                                                                                                                                                                                                  | 5070                                                     | 02                                     |
|        |     | (iii)                           | mole<br>(1 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es HC $l$ = 0.04 × 18/1000 = 7.2 × 10 <sup>-4</sup><br>hark for showing 0.04 × 18/1000 (or 7.2 × 10 <sup>-4</sup> without v                                                                                                                                                                                                                                                                                          | working))                                                |                                        |
|        |     |                                 | 2 mc<br>(1 m<br>calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oles $HCl \equiv 1$ mole $Ca(OH)_2$ (or implication of this i.e. 3.<br>nark for indication in any way of correct 2:1 ratio i.e. $\frac{1}{2}$<br>ulation)                                                                                                                                                                                                                                                            | $6 \times 10^{-4}$ )<br>2 value of answe                 | er to 1 <sup>st</sup> part of          |
|        |     |                                 | $\frac{conc}{corre}$ apply<br>ALLC<br>alter<br>$C_1 \times C_2 \times C_2 \times C_1 \times C_2 \times C$ | centration Ca(OH) <sub>2</sub> = $3.6 \times 10^{-4} \times 1000/25 = 0.0144$ (m<br>ect answer without working = 3 marks<br>ly error carried forward between the parts<br>OW: 0.014 NOT: 0.015<br>matively:<br>$\frac{\langle V_1}{\langle V_2} = \frac{0.04 \times 18}{C_2 \times 25}$ (1 mark)<br>$\frac{\langle V_1}{\langle V_2} = \frac{n_1}{n_1} \frac{0.04 \times 18}{C_2 \times 25} = \frac{2}{1}$ (2 marks) | ol/dm³)                                                  | [3]                                    |
|        |     |                                 | $O_2 \wedge$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sqrt{v_2}$ $\sqrt{v_2}$ $\sqrt{v_2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                              |                                                          |                                        |
|        |     |                                 | Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ect answer from this = (3rd mark)                                                                                                                                                                                                                                                                                                                                                                                    |                                                          |                                        |
|        |     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          | [Total: 9]                             |
| A6     | (a) | (i)                             | to kil<br>ALLO<br>NOT<br>NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Il bacteria/to kill micro-organisms/to kill germs<br>OW: to disinfect the water/to sterilise the water<br>Γ: to kill viruses/to kill algae/to kill bugs<br>Γ: to clean the water/to make the water clear                                                                                                                                                                                                             |                                                          | [1]                                    |
|        |     | (ii)                            | sulpi<br>ALL(<br>ALL(<br>NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hur dioxide/sulphite(s)/named sulphite<br>OW: (calcium) hypochlorite//chlorate(I)/hydrogen pero:<br>OW: correct formulae<br>F: bleaching powder                                                                                                                                                                                                                                                                      | kide                                                     | [1]                                    |
|        | (b) | two<br>ALL                      | or m<br>.OW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ore units polymerised with continuation bonds correct structure with brackets, continuation bonds an                                                                                                                                                                                                                                                                                                                 | d 'n' at bottom ri                                       | ght [1]                                |
|        | (c) | any<br>•<br>NO                  | <b>two</b><br>alum<br>sodii<br>iron(<br>(in e<br>T: iroi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of:<br>ninium oxide dissolves (in sodium hydroxide)/aluminiur<br>um hydroxide)/aluminium oxide is soluble (in excess s<br>(III) oxide does not dissolve (in excess sodium hydroxi<br>excess sodium hydroxide)<br>n(III) forms a precipitate                                                                                                                                                                          | n oxide forms a<br>odium hydroxide<br>de)/iron(III) oxid | solution (in<br>e)/<br>le is insoluble |
|        |     | •<br>All<br>Foi                 | sepa<br>.OW:<br>R ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | arate by filtration/allowing iron oxide to settle and draw<br>separate by centrifugation/use a centrifuge<br>L 3 points IGNORE: names of solids/solutions formed                                                                                                                                                                                                                                                     | ing off solution/d                                       | lecanting<br>[2]                       |
|        | (d) | diss<br>low<br>ALL<br>ALL<br>NO | olves<br>ers m<br>OW:<br>OW:<br>T: low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s the aluminium oxide/alumina or<br>nelting point of the melt/aluminium oxide mixture OWT<br>lowers the melting point of aluminium oxide<br>lowers the temperature at which electrolysis takes pla<br>vers the temperature (unqualified)                                                                                                                                                                             | ГЕ<br>ce                                                 | [1]                                    |

| Page 6 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O LEVEL – October/November 2008 | 5070     | 02    |

(e) (aluminium) covered with (aluminium) <u>oxide</u> layer/there is (aluminium) <u>oxide</u> on the surface ALLOW: protective layer formed by reaction with oxygen NOT: wrong layer e.g. oxygen layer/layer of nitrogen layer/aluminium oxide is unreactive/layer stops (chemical) reaction/protective layer formed NOT: aluminium is unreactive [2]

[Total: 8]

| Page 7 | Mark Scheme                         | Syllabus | Paper    |
|--------|-------------------------------------|----------|----------|
|        | GCE O LEVEL – October/November 2008 | 5070     | 02       |
|        |                                     | •        | <u> </u> |

## Section B

| B7 | (a) | rea<br>cata<br>ALL                                                                                                                                                                                                                                                                       | ctants on left and products on right <b>and</b> products at lower level than reactants<br>alysed reaction curve lower than that for uncatalysed<br>_OW: two separate diagrams for catalysed and uncatalysed reactions as long as they a<br>be same scale                                                                                                                                                                                                                          | re         |  |  |  |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|
|    |     | entl                                                                                                                                                                                                                                                                                     | halpy change correctly shown in words or as $\Delta H$                                                                                                                                                                                                                                                                                                                                                                                                                            | [3]        |  |  |  |
|    | (b) | (i)                                                                                                                                                                                                                                                                                      | (fractional) distillation/fractionation/description of this i.e. gradually raising temperature of liquefied air and collecting fractions ALLOW: Linde process/double distillation                                                                                                                                                                                                                                                                                                 | [1]        |  |  |  |
|    |     | (ii)                                                                                                                                                                                                                                                                                     | <ul> <li>any two of:</li> <li>cracking/steam reforming/</li> <li>high temperature/stated temperature ALLOW: 300–1000 °C/</li> <li>NOT heat (unqualified)</li> <li>use of catalyst</li> <li>ALLOW: the following specified substances without the word catalyst aluminium oxide, zinc oxide/zeolites/copper/silicon dioxide/porous pot/correct symbols of formulae for these</li> <li>ALLOW: the word catalyst with incorrect catalyst e.g. catalyst of copper sulphate</li> </ul> | /<br>[2]   |  |  |  |
|    | (c) | (i)                                                                                                                                                                                                                                                                                      | increase in pressure increases yield/moves the equilibrium to the right/increases<br>the forward reaction/decreases the back reaction/more products formed/more<br>ammonia formed OWTTE<br>number of moles fewer on right (than left)/number of moles greater on left (than right)/<br>(gas) volume smaller on right/(gas) volume larger on left/increased pressure favours s<br>with fewer moles or lower volume OWTTE                                                           | ide<br>[2] |  |  |  |
|    |     | <ul> <li>with fewer moles or lower volume OWTTE</li> <li>(ii) decreases yield/moves the equilibrium to the left/more reactants/less ammonia formed OWTTE         <ul> <li>(forward) reaction is exothermic/reaction gives out energy/back reaction is endothermic</li> </ul> </li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |  |  |  |

[2]

[Total: 10]

| Page 8 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O LEVEL – October/November 2008 | 5070     | 02    |

- B8 (a) (i) any two of:
  - chromatography paper (with bottom of paper) in solvent

ALLOW: diagram showing this with solvent clearly labelled and paper dipping into solvent

ALLOW: named solvent

- spot of mixture put (on line)
- ALLOW: diagram showing this

NOT: diagrams showing original spot/base line below solvent level

- allow solvent to move up paper/pigments are separated as they move (vertically) up the paper
- ALLOW: separated pigments on a diagram vertically aligned

NOT: single pigments originating from different spots on the base line [2]

(ii) distance spot moves ÷ distance of solvent front from base (starting) line
 ALLOW: diagrams
 ALLOW: distance moved by substance ÷ distance moved by solvent
 ALLOW: the ratio of the distance moved by the spot/substance to that moved by the solvent

NOT: the ratio of the distance moved by the solvent to that moved by the spot/substance

- (b) (i) it/X is a reducing agent or it/X gets oxidised or potassium manganate(VII) oxidises X NOT: reference to colour changes NOT: potassium manganate(VII) is an oxidising agent (unqualified)
  - (ii) it/X does not contain a (C=C) double bond/X is saturated
  - (iii) it/X is a weak acid
     ALLOW: X is a weaker acid (than hydrochloric)/X is weak/is not strong compared with hydrochloric acid
     NOT: X is not a strong acid

(c) (i) 
$$C = \frac{2.67/12}{0.223}$$
  $H = \frac{0.220/1}{0.220}$   $O = \frac{7.11/16}{0.444}$   $\frac{(\div \text{ by correct A}_r)}{(\div \text{ by lowest figure})}$   
simplest ratio = CHO<sub>2</sub> (any order) [3]

[1]

r.1

[Total: 10]

(ii) C<sub>2</sub>H<sub>2</sub>O<sub>4</sub>

|    | Pa  | ge 9                                                      | Mark Scheme                                                                                                                                                                                                                                                                                           | Syllabus                     | Paper                 |
|----|-----|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------|
|    |     |                                                           | GCE O LEVEL – October/November 2008                                                                                                                                                                                                                                                                   | 5070                         | 02                    |
| B9 | (a) | break<br>(of ele<br>by ele<br>ALLO<br>ALLO                | ing down/splitting up/decomposition<br>ectrolyte/compound/substance)<br>ectricity/electric current<br>W: causing a chemical reaction to occur by an electric cu<br>W: producing elements (from compounds) by using an electric cu                                                                     | irrent<br>ectric current     | [1]                   |
|    | (b) | (i) s<br>A<br>A<br>N                                      | odium, chloride, hydrogen, hydroxide (ALLOW: hydroxyl)<br>LLOW: Na <sup>+</sup> , C <i>l</i> <sup>-</sup> , H <sup>+</sup> and OH <sup>-</sup><br>LLOW: mixture of symbols and words<br>IOT: chlorine ions                                                                                            | (all 4 needed)               | [1]                   |
|    |     | (ii) 2<br>IC<br>A<br>A                                    | $Cl^- \rightarrow Cl_2 + 2e^-$<br>GNORE: state symbols<br>LLOW 2e instead of 2e <sup>-</sup><br>LLOW: $2Cl^ 2e^- \rightarrow Cl_2$                                                                                                                                                                    |                              | [1]                   |
|    |     | (iii) h<br>h<br>p<br>N                                    | ydrogen ions form hydrogen (gas)/hydrogen ions remove<br>ydroxide/OH <sup>-</sup> ions (remaining in solution) are alkaline OF<br>H/alkalinity caused by OH <sup>-</sup> ions<br>IOT: hydroxide ions remain in solution (must be a link to p                                                          | ed<br>R hydroxide/OH⁻<br>oH) | ions give high<br>[2] |
|    | (c) | in solu<br>NOT:<br>ALLO<br>REJE<br>ions c<br>IGNO<br>NOT: | ution ions can <u>move</u><br>ions are free<br>W: ions carry the charge<br>CT: if reference to electrons moving<br>cannot move in solid/ions held together (by strong forces)<br>RE: electrons can't move for this mark<br>ions not present                                                           |                              | [2]                   |
|    | (d) | (i) re<br>A<br>N<br>(s<br>A<br>N<br>N                     | eflux ALLOW: heat/high temperature/boil/warm<br>LLOW: temperature range of 30–200 °C<br>IOT: distil<br>sulphuric) acid catalyst/sulphuric acid<br>LLOW: other named mineral acids/hydrogen ion catalyst<br>IOT: acid without qualification (otherwise confusion with t<br>IOT: catalyst (unqualified) | he lactic acid)              | [2]                   |
|    |     | (ii) s<br>A<br>R                                          | tructure of lactic acid correct i.e. $CH_3CHOHCO_2C_2H_5$<br>LLOW: $RCO_2C_2H_5$<br>EJECT: if OH group altered                                                                                                                                                                                        |                              | [1]                   |
|    |     |                                                           |                                                                                                                                                                                                                                                                                                       |                              | [Total: 10]           |

| Paç    | ge 10                                                                                                                                 |                                                                                                                | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Syllabus                                                                   | Paper           |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------|
|        |                                                                                                                                       |                                                                                                                | GCE O LEVEL – October/November 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5070                                                                       | 02              |
| B10(a) | ) proton number = 53 in both isotopes AND electron number 53 in both<br>I-125 has 72 neutrons and I-131 has 78 neutrons (both needed) |                                                                                                                | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |                 |
| (b)    | suital<br>mang<br>ALLC<br>soluti<br>ALLC<br>IGNC<br>ALLC<br>NOT:                                                                      | ble r<br>gana<br>DW:<br>ion t<br>DW:<br>DRE<br>DW:<br>: pur                                                    | reagent e.g. (aqueous) chlorine/(aqueous) bromine/niti<br>ate(VII)/(potassium) permanganate/(sodium) dichroma<br>correct formulae<br>urns brown<br>solution turns yellow/orange<br>: colour of reagents at start<br>grey-black <u>crystals</u> or <u>solid/grey crystals</u> or <u>solid</u> /black<br>rple solution/iodine is formed                                                                                                                                              | ric acid/(potassiu<br>te/iron(III) ions<br><u>crystals</u> or <u>solid</u> | um)<br>[2]<br>! |
| (c)    | Zn +<br>(1 ma<br>IGNC                                                                                                                 | I <sub>2</sub> –<br>ark f<br>DRE                                                                               | <ul> <li>→ Zn<sup>2+</sup> + 2I<sup>-</sup></li> <li>or formulae, 1 mark for balance)</li> <li>: state symbols</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |                                                                            | [2]             |
| (d)    | (i) ti<br>32<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4                           | his i<br>3 of <sup>1</sup><br>2 of <sup>1</sup><br>1 or<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>• | s a level of response question:<br>the following points = 2 marks<br>the following points = 1 mark<br>0 of these points = 0 mark<br>high melting or boiling points/<br>high density/<br>form coloured compounds/<br>DW: form coloured ions<br>: they are coloured/they form coloured solutions<br>form ions with different charges/different valencies/ma<br>form complex ions/<br>catalysis/they (or their compounds) are good catalysts<br>DRE: general metallic properties/hard | ultiple valencies<br>s                                                     | [2]             |
|        | (ii) T<br>N                                                                                                                           | Γi₂O<br>NOT                                                                                                    | <sub>3</sub> /O <sub>3</sub> Ti <sub>2</sub><br>: Ti <sub>4</sub> O <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            | [1]             |
| I      | (iii) T<br><i>F</i>                                                                                                                   | FiC <i>l</i><br>ALLO<br>GNO                                                                                    | $_{4} + 2H_{2}O \rightarrow TiO_{2} + 4HCl$<br>DW: multiples<br>DRE: state symbols                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            | [1]             |
|        |                                                                                                                                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            | [Total: 10]     |